Data-driven spectral analysis of the Koopman operator

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extended dynamic mode decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the Koopman operator.

Numerical approximation methods for the Koopman operator have advanced considerably in the last few years. In particular, data-driven approaches such as dynamic mode decomposition (DMD)51 and its generalization, the extended-DMD (EDMD), are becoming increasingly popular in practical applications. The EDMD improves upon the classical DMD by the inclusion of a flexible choice of dictionary of obs...

متن کامل

A Data-Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition

The Koopman operator is a linear but infinite-dimensional operator that governs the evolution of scalar observables defined on the state space of an autonomous dynamical system and is a powerful tool for the analysis and decomposition of nonlinear dynamical systems. In this manuscript, we present a data-driven method for approximating the leading eigenvalues, eigenfunctions, and modes of the Ko...

متن کامل

Inverse Problem for Interior Spectral Data of the Dirac Operator with Discontinuous Conditions

In this paper, we study the inverse problem for Dirac differential operators with  discontinuity conditions in a compact interval. It is shown that the potential functions can be uniquely determined by the value of the potential on some interval and parts of two sets of eigenvalues. Also, it is shown that the potential function can be uniquely determined by a part of a set of values of eigenfun...

متن کامل

Ergodic Theory, Dynamic Mode Decomposition, and Computation of Spectral Properties of the Koopman Operator

We establish the convergence of a class of numerical algorithms, known as Dynamic Mode Decomposition (DMD), for computation of the eigenvalues and eigenfunctions of the infinitedimensional Koopman operator. The algorithms act on data coming from observables on a state space, arranged in Hankel-type matrices. The proofs utilize the assumption that the underlying dynamical system is ergodic. This...

متن کامل

Spatiotemporal Feature Extraction with Data-Driven Koopman Operators

We present a framework for feature extraction and mode decomposition of spatiotemporal data generated by ergodic dynamical systems. Unlike feature extraction techniques based on kernel operators, our approach is to construct feature maps using eigenfunctions of the Koopman group of unitary operators governing the dynamical evolution of observables and probability measures. We compute the eigenv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied and Computational Harmonic Analysis

سال: 2020

ISSN: 1063-5203

DOI: 10.1016/j.acha.2018.08.002